首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5462篇
  免费   268篇
  国内免费   4篇
林业   424篇
农学   193篇
基础科学   35篇
  1078篇
综合类   880篇
农作物   216篇
水产渔业   340篇
畜牧兽医   2003篇
园艺   177篇
植物保护   388篇
  2023年   33篇
  2022年   38篇
  2021年   78篇
  2020年   135篇
  2019年   126篇
  2018年   136篇
  2017年   122篇
  2016年   130篇
  2015年   112篇
  2014年   132篇
  2013年   259篇
  2012年   305篇
  2011年   384篇
  2010年   221篇
  2009年   168篇
  2008年   313篇
  2007年   318篇
  2006年   291篇
  2005年   290篇
  2004年   266篇
  2003年   271篇
  2002年   256篇
  2001年   64篇
  2000年   66篇
  1999年   69篇
  1998年   50篇
  1997年   46篇
  1996年   49篇
  1995年   39篇
  1994年   44篇
  1993年   50篇
  1992年   39篇
  1991年   46篇
  1990年   48篇
  1989年   44篇
  1988年   38篇
  1987年   40篇
  1986年   55篇
  1985年   32篇
  1984年   43篇
  1983年   35篇
  1982年   36篇
  1981年   27篇
  1980年   20篇
  1979年   23篇
  1978年   28篇
  1977年   26篇
  1975年   20篇
  1973年   24篇
  1972年   20篇
排序方式: 共有5734条查询结果,搜索用时 31 毫秒
61.
62.
63.
Recycling of greenhouse irrigation water in hydroponic tomato production requires a water remediation process to reduce the risk of pathogen proliferation and the accumulation of other chemical compounds. The dissolution of ozone into bulk irrigation solutions is an effective technology for reducing chemical contaminant and pathogen levels in greenhouse irrigation water. Greenhouse managers utilizing ozonation typically remove residual ozone prior to distribution to the crop. Removal of the active compound in this treatment process has been deemed a prudent measure intended to prevent ozone-based plant damage. This said, although atmospheric ozone has been extensively studied with respect to its phytotoxicity, there are very few studies available on ozone in the aqueous phase in which evidence to support the removal of ozone (on the basis of phytotoxicity) is provided. Furthermore, removal limits the overall efficacy of the treatment as the ozone is not available to treat distribution lines and emitters. The purpose of this study was to determine if aqueous ozone impacts tomato (Lycopersicon esculentum Mill. cv Matrix F1) productivity when applied directly to a mineral wool growth substrate via drip irrigation. At the highest aqueous ozone treatment level (3.0 mg L−1) significant increases in leaf area, shoot dry matter, and stem thickness were observed. There were no differences across all treatments in terms of net CO2 assimilation rate, stomatal conductance, internal leaf CO2 concentration, chlorophyll content index, and fruit production. A qualitative assessment of algae growth on the substrate surface was conducted. Both ozone treatments resulted in a visually discernible reduction in algae prevalence on the substrate surface. The results of this study do not support the removal of aqueous ozone (at the concentrations examined) prior to distribution when the solution is applied via drip irrigation in mineral wool hydroponic tomato production.  相似文献   
64.
We investigated carbon (C) uptake and respiratory losses of an adult Pinus cembra tree at the alpine timberline throughout an entire year by means of an automated, multiplexing gas exchange system. These chamber measurements were then combined with biomass data for scaling up the C budget to the tree level. Integrated over an entire year, the cumulative C gain of the tree under study was 23.5 kg of C in 2002. The daily C balance was negative for 5 months and the estimated total wintertime respiratory losses were 9% of the amount of C fixed during the growing season. The total annual C loss of the tree consumed 55% of the annual net C gain and the remaining surplus was stored in new tissues (36%) and used for fine root growth (9%). Thus, the overall C budget of P. cembra at the upper timberline is balanced fairly well, although the C sink strength in fine roots is strongly limited owing to low root zone temperatures when compared to conifers at lower elevation sites.  相似文献   
65.
新技术在国际木业中的应用与展望   总被引:1,自引:0,他引:1  
介绍计算机技术、模拟技术、扫描技术和监控技术等新技术,在国际木 材生产业。木材一次加工业、木材二次加工业和木材加工机械制造应用状况及其发展前景。  相似文献   
66.
67.
In the 1970s unexpected forest damages, called “new type of forest damage” or “forest decline”, were observed in Germany and other European countries. The Federal Republic of Germany and the German Federal States implemented a forest monitoring system in the early 1980s, in order to monitor and assess the forest condition. Due to the growing public awareness of possible adverse effects of air pollution on forests, in 1985 the ICP Forests was launched under the convention on long-range transboundary air pollution (CLRTAP) of the United Nations Economic Commission for Europe (UN-ECE). The German experience in forest monitoring was a base for the implementation of the European monitoring system. In 2001 the interdisciplinary case study “concept and feasibility study for the integrated evaluation of environmental monitoring data in forests”, funded by the German Federal Ministry of Education and Research, concentrated on in-depths evaluations of the German data of forest monitoring. The objectives of the study were: (a) a reliable assessment of the vitality and functioning of forest ecosystems, (b) the identification and quantification of factors influencing forest vitality, and (c) the clarification of cause-effect-relationships leading to leaf/needle loss. For these purposes additional data from external sources were acquired: climate and deposition, for selected level I plots tree growth data, as well as data on groundwater quality. The results show that in particular time series analysis (crown condition, tree growth, and tree ring analysis), in combination with climate and deposition are valuable and informative, as well as integrated evaluation of soil, tree nutrition and crown condition data. Methods to combine information from the extensive and the intensive monitoring, and to transfer process information to the large scale should be elaborated in future.
Sabine AugustinEmail:
  相似文献   
68.
Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.  相似文献   
69.
Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated natural fluctuations in leaf temperature and effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the top of the canopy at Harvard Forest. Throughout the day, leaves often reached temperatures as much as 15 degrees C above air temperature. The highest temperatures were reached for only a few seconds at a time. We compared isoprene emission rates measured when leaf temperature was changed rapidly with those measured when temperature was changed slowly. In all cases, isoprene emission rate increased with increasing leaf temperature up to about 32 degrees C and then decreased with higher temperatures. The temperature at which isoprene emission rates began to decrease depended on how quickly measurements were made. Isoprene emission rates peaked at 32.5 degrees C when measured hourly, whereas rates peaked at 39 degrees C when measurements were made every four minutes. This behavior reflected the rapid increase in isoprene emission rate that occurred immediately after an increase in leaf temperature, and the subsequent decrease in isoprene emission rate when leaf temperature was held steady for longer than 20 minutes. We concluded that the observed temperature response of isoprene emission rate is a function of measurement protocol. Omitting this parameter from isoprene emission models will not affect simulated isoprene emission rates at mild temperatures, but can increase isoprene emission rates at high temperatures.  相似文献   
70.
We examined the photosynthetic responses of four species of saplings growing in the understory of the Duke Forest FACE experiment during the seventh year of exposure to elevated CO2 concentration ([CO2]). Saplings of these same species were measured in the first year of the Duke Forest FACE experiment and at that time showed only seasonal fluctuations in acclimation of photosynthesis to elevated [CO2]. Based on observations from the Duke Forest FACE experiment, we hypothesized that after seven years of exposure to elevated [CO2] significant photosynthetic down-regulation would be observed in these tree species. To test our hypothesis, photosynthetic CO2-response and light-response curves, along with chlorophyll fluorescence, chlorophyll concentration and foliar N were measured twice during the summer of 2003. Exposure to elevated [CO2] continued to increase photosynthesis in all species measured after seven years of treatment with the greatest photosynthetic increase observed near saturating irradiances. In all species, elevated [CO2] increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield estimated by light curves, chlorophyll concentration, and foliar nitrogen concentrations were unaffected by elevated [CO2]. Contrary to our hypothesis, there is little evidence of progressive N limitation of leaf-level processes in these understory tree species after seven years of exposure to elevated [CO2] in the Duke Forest FACE experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号